将ate探测器的原始实验数据交给陈正平去处理后,徐川马不停蹄的赶回了魔都。
核能项目第二阶段的半导体材料研发已经到了关键节点,他得回去主持大局,加快速度做出来。
毕竟现在已经到了农历十二月中旬,再有几天的时间就过小年了。
等过完小年,实验室也差不多就该放年假了。
魔都,科学院原子核研究所中,徐川带着白色的聚酯手套,操控着眼前的离子注入机将设备中的金属离子材料的送入了ad气相沉积仪中。
这是制造半导体材料中很关键的一步,为半导体基底注入杂质。
当然,这个杂质并非我们传统概念中的杂质,它有些类似于我们手机中使用的半导体硅基芯片。
众所周知,半导体是指常温下导电性能介于导体与绝缘体之间的材料。
它的导电性可控,容易受到微量杂质和外界条件的影响而发生变化。
往里面掺杂磷、砷、镓等不同电阻的材料可以让其形成np极,作为控制电荷开关的门。
这是半导体材料的核心基础。
其中非常着名,我们日常生活中也容易接触到光伏发电也是建立在这一基础上的。
不过它利用的是其中另一部分--半导体特有的「光生伏特效应」。
光伏发电是通过光照使不均匀半导体或半导体与金属结合的不同部位之间产生电位差的现象。
首先是将光伏发电板将光子(光波)转化为电子、将光能量转化为电能量,然后让其形成电压。
有了电压,就像是在河流上筑高了大坝,如果两者之间连通,就会形成电流的回路。
这是光伏发电的核心原理,也是核能β辐射能聚集转换电能机制的原理之一。
不过传统的光伏发电技术有个很大的缺点,那就是一般的太阳能电池光谱响应的波长范围基本都在320-1100n】
漫长的等待时间过去,徐川重新带上了手套口罩护目镜等防护设备,打开气相沉积炉将里面完成加工的材料取了出来。
第一批加工好的材料并不算大,边长只有30*3不过作为实验体,它已经足够了。
值得一提的是,尽管它的面积不大,但厚度却比一般需要使用气相沉积设备加工的材料厚多了,足足有近两厘米厚。
毕竟是用于处理核废料上的,如果太薄,它没法完全吸收掉核废料散发的辐射。
事实上,这已经不是他第一次做出这种半导体材料了。
在之前的时间中,他已经相应的做出了三分完全不同的新半导体材料,只是测试结果都不尽人意。
当然,这是他故意的,毕竟一次就做成功,这有点太不可思议了。